If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+3a-2=0
a = 3; b = 3; c = -2;
Δ = b2-4ac
Δ = 32-4·3·(-2)
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{33}}{2*3}=\frac{-3-\sqrt{33}}{6} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{33}}{2*3}=\frac{-3+\sqrt{33}}{6} $
| X^2+6x-17=23 | | 2×(x+7)2=242 | | 7(r+7=2r-1+3r+60 | | -h=12 | | 3(u+8)=-3(6u-6)+9u | | 6975000000=5(3)^x | | -u=64 | | 9x*1.5+3=113 | | 3x-4x+2=5x-3 | | 10x-6=x-6 | | 53x-69=420 | | 63=9y-2y | | 8x-2(x+6)=30 | | 16+x=12* | | 4x−5=2x+11 | | (x-8)^2-6=43 | | (x+8)(x-2)-39=0 | | 8x-2(x+6)=0 | | 2y/7+4y/7-3/14=1/14 | | 7-w-2/3=5-w/2 | | x+44/2xx=11 | | 49=x+6x | | w+12=15 | | 7x+5=2(4x-3) | | 3t2-9t=30 | | 32=15z | | 12x2−75=0 | | y4+ 9=10 | | x÷2+14=13 | | 21a=11 | | (10x-10)+5x+55=180 | | -2x+10=2(-x+5)+5 |